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Abstract: Entropy remains a part of so many thermodynamics relations, yet its true identity lacks

clarity. We shall show that entropy may be nothing more than a mathematical contrivance, one that

is illogically used to explain too many phenomena. In so doing, we shall question many traditional

thermodynamic conceptualizations, as well as provide a unique understanding as to how

Boltzmann’s constant relates to a system’s ability to do work. VC 2015 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-28.3.352]

Résumé: L’entropie continue à faire partie de bien des relations thermodynamiques, bien que sa

vraie nature ne soit pas claire. Nous montrerons que l’entropie n’est qu’un stratagème

mathématique, un qui est illogiquement utilisé pour expliquer beaucoup trop de phénomènes. En ce

faisant, nous mettrons en doute bien des concepts thermodynamiques traditionnels, tout en

fournissant une compréhension unique du rôle de la constante de Boltzmann dans la capacité d’un

système à fournir du travail.

Key words: Entropy; Lost Work; Second Law; Boltzmann’s Constant; Ideal Gas Law; Enthalpy; Ability; Disorder.

I. INTRODUCTION

A quote from Sommerfeld,1 “Thermodynamics is a

funny subject. The first time you go through it, you do not

understand it at all. The second time you go through it, you

think you understand it, except for one, or two points. And

the third time you go through it, you don’t know you don’t

understand it, but by that time you are so used to it, it doesn’t

bother you anymore.”

Entropy is the parameter inherent to modern thermody-

namics. Remarkably, its definition has not attained clarity

150 years after Rudolf Clausius’ declaration that entropy is

something which when multiplied by temperature gives

energy, which led to the enthalpy relation2,3

TS ¼ eþ PV; (1)

where the thermal parameter’s temperature (T) and entropy

(S) are equated to the internal energy (e) plus the mechanical

parameters pressure (P) and volume (V). Herein, e represents

all the energy within a system that is not directly attributable

to the mechanical parameters (P,V); this variation of how

some view e simplifies the science.

Clausius’ declaration has also led to a system’s entropy

change (dS) being equated to its energy change (dQ) divided

by its temperature (T)2,3

dS ¼ dQ=T: (2)

Entropy’s mid-20th century guise was it represents the4

“randomness of matter in incessant motion,” which was

based upon Boltzmann’s entropy2,3,5,6 (1877)

S ¼ k ln X; (3)

where X is the total number of system microstates, while k is

Boltzmann’s constant.

Accordingly, entropy is often accepted as a measurement

of a system’s disorder to which Ben-Naim5 rightfully

discusses that the concept of disorder is not particularly sci-

entific. Ben-Naim wrote his evolutionary books5,6 on ther-

modynamics, as a marriage between thermodynamics and

Shannon’s information theory. Basically assuming that infor-

mation is carried through thermodynamics processes, thus

attempting to explain why the probability functions com-

bined with an altered entropy5,6 may explain our unarguable

empirical data.

Another 21st century consideration for entropy is7 “the

dispersal of a system’s molecular energy.” Although terms

such as “randomness,” “disorder,” “freedom,” “spread,” or

“dispersal” are great descriptors for what molecules within

closed expanding systems experience, they are subjective

terms that do not give entropy clarity.

Consider that a closed system simply prevents mass

transfer with its surroundings. Since closed expanding sys-

tems must upwardly displace our atmosphere’s mass, then

such systems must perform work onto the atmosphere, thus

explaining, “lost work” by both real and idealized systems,8,9

i.e., Sadi Carnot’s cycle (1824). Accordingly, entropy and its

accomplice, the second law must be queried at their funda-

mental levels, i.e., Mayhew’s8,9 assertion that entropy may

be nothing more than a mathematical contrivance.

Some may argue that expanding systems are small in

comparison to Earth’s atmosphere, hence may not actually

displace our atmosphere. I ask you: How big does the expan-

sion have to be before you accept its relevance? Certainly,

expansion may result in an initial local pressure increase but

eventually mechanical equilibrium will prevail, rendering

the process into an isobaric volume increase, hence the lost

work (Wlost) is8,9a)Kent.Mayhew@gmail.com
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Wlost ¼ PdV: (4)

Of course when any system loses energy in a given pro-

cess, then that process cannot be deemed reversible no mat-

ter how it is lost.8,9 The implication of Eq. (4) becomes that

a mistake on a grandiose scale was made by 19th century

greats such as Clausius, Kelvin, Maxwell, and Boltzmann.

Followed by all of us who have adhered to their assertions

into the 21st century.

II. EXPANSION INTO VOLUME

Figure 1 shows four different forms of a gas attaining a

volume increase. Most texts2,3,5,6 analyze such volume

increases in terms of an entropy increase as defined by

DS ¼ k lnðV3=V1Þ; (5)

where V3 is the final volume, V1 is the initial volume, and

DV ¼ V2, i.e., V3 ¼ V2 þ V1.

Treating Eq. (5) as valid, irrespective of the state of the

increased volume (DV ¼ V2) is unrealistic, i.e., Fig. 1 case

(I) is not universally applicable to Eq. (5) for all volume

increases.

Consider Fig. 1 case (II). Herein, the partition simply

separates two equal volumes of identical ideal gas, at the

same temperature, volume, and pressure. When the partition

is lifted, although each gas molecule has a larger total vol-

ume in which it can reside, the mean molecular volume

remains constant. Certainly, the partition can be replaced at

any moment and on average we would return to the original

state, assuming that the particles are indistinguishable.

Hence, the process can be deemed as reversible, i.e., Eq. (5)

does not apply, as no work is done in this process of partition

removal. Obviously, the universal application of Eq. (5) to

nondescript volumes makes little or no sense.

Consider Fig. 1 case (III). Assume that the pressure in

system 1 is higher than the surrounding atmosphere. As the

gas molecules push the piston outward, the Earth’s atmos-

phere is upwardly displaced. Herein, the work lost by system

1 is defined by Eq. (4). If one wanted to consider this in

terms of an entropy change of system 1 then they would be

empirically correct in using traditional Eq. (5), although logi-

cally compromised.

Is the process reversible? No it is not reversible because

system 1 lost work in displacing the surrounding atmosphere.

Specifically, system 1 has experienced an irretrievable

energy decrease, as defined by Eq. (4). If the expanding

closed system 1’s walls are 100% insulated, then the temper-

ature within system 1 will decrease, due to the work done.

Conversely, if system 1 expands quasistatically and heat can

readily flow through the said walls, then system 1 can

expand isothermally.

Of course, this reasoning of lost work was not under-

stood by the 19th century greats. Hence, their insistence in

equating entropy change to lost work

W ¼ TdS ¼ dEþ PdV: (6)

Boltzmann formulated his interpretation of entropy

Eq. (3), such that Eq. (6) was valid, thus attaining his famous

Boltzmann’s constant (k).

To enhance our understanding: Consider that for case

(1), V2 is a vacuum. Is there any work done? Mayhew9,10

FIG. 1. (Color online) Shows four cases for the increase of a gas’s volume: (I) Lift partition: expansion into a nondescript volume, (II) lift partition: expan-

sion into similar volume, (III) expansion of closed system, i.e., a piston cylinder, (IV) lift partition: mixing of two gases.
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discusses that no work can be done onto a vacuum. Accord-

ingly, as long as the V2’s pressure approximates zero, then as

gaseous molecules enter the vacuum, in which case no work

is actually done. Ultimately, the end state is going to be a

larger V3 at a lower pressure. Since no work is actually done,

then neither Eq. (4), nor Eq. (5), nor Eq. (6) should apply. Is

the process reversible? If V1 starts off at 1 atm pressure, and

the final volume (V3) has the ability to shrink under the

atmosphere’s weight, then yes. For example, consider that

V2 is a vacuum created by pulling a piston outward from a

hermetically sealed piston cylinder, then remove the expand-

ing force (pulling), then the atmosphere’s pressure will drive

the piston back into the cylinder returning everything their

initial states, thus the process is reversible.

In the above process, the system’s ability ðPVÞ to do

work never changes,9 i.e.,

W ¼ dðPVÞ ¼ 0: (7)

The above equation confounds tradition, so it will be

explained in Section III.

Consider Fig. 1 case (IV). Herein, the partition separates

two equal volumes of differing noninteracting ideal gases

(no chemical potential change), at the same temperature, vol-

ume, and pressure. Lift the partition and the two gases mix.

Ben-Naim5 rightfully points out that most texts get mixing

wrong by claiming that there is an entropy increase in such a

mixing process. Furthermore, Ben-Naim5 shows that in order

for there to be an entropy increase during mixing, then there

must be a real expansion, i.e., the type of volume increase

shown in case (III). Although Ben-Naim5 uses other more

complex arguments than given herein, what he actually has

shown is this; mixing only has an entropy increase if there is

a displacement of our atmosphere, as professed by this

author.

Concerning the traditional interpretations for mixing,

Ben-Naim writes:5 “It is admittedly shocking to learn that

what we have seen everyday as mixing and what we thought

we have fully understood is only an illusion.” Interestingly,

Ben-Naim was still thinking in terms entropy, rather than:

Although each gas molecule has a larger total volume in

which it can reside, the mean molecular volume remains

constant.

III. ABILITY TO DO WORK AND BOLTZMANN’S
CONSTANT

Equation (7) represents the change in the ability of a sys-

tem to do work. A system’s ability ðPVÞ to do work is basi-

cally the amount of work a system can do when the

surrounding pressure approaches zero. Why this restriction?

A system can only do work against another system/surround-

ing, which is at a lower pressure. Accordingly, if we consider

two closed gaseous systems at equal pressures (mechanical

equilibrium), then the system with a greater volume would

have a greater ability to do work.

Reconsider the ideal gas law in terms of an ideal gaseous

system’s ability to do work

PV ¼ NkT: (8)

In terms of Boltzmann’s constant (k), we can write

k ¼ PV=NT: (9)

Consider a unit cube whose volume is “V” and surface

area is “A”. If “M” represents the mass of overlying atmos-

phere, and “g” is gravitational constant. Then the pressure

exerted by the Earth’s atmosphere on the top surface of the

unit cube is

P ¼ Mg=A: (10)

Accordingly, Eq. (9) can be rewritten

k ¼ ðMg=AÞðV=NTÞ: (11)

For a unit cube: ðV=AÞ ¼ h, wherein “h” is the cube’s height.

Rewriting Eq. (11)

k ¼ ðMg=TÞðh=NÞ; (12)

which can be rewritten as

kTN ¼ Mgh: (13)

Limit any the volume change to only vertical expansion.

Then differentiating both sides, we obtain the change in tem-

perature with height as

NkdT ¼ Mgdh: (14)

Thus

k ¼ ð1=NÞMgdh=dT: (15)

The above equation implies that Boltzmann’s constant

(k) is the molecular proportionality for the work required to

displace Earth’s overlying atmosphere by a height of dh, per

degree of temperature change, in Earth’s gravitational field.

There have been other attempts to correlate gravity and ther-

modynamics,11 but none are as straightforward as this.

IV. AN ALTERNATE PROOF

When two competing theories elicit identical empirical

results, it becomes awkward to demonstrate one being supe-

rior to the other, beyond Occam’s razor style arguments.

This is the situation faced by this author, along with the 150

plus years of indoctrination may render my task insurmount-

able. This author12 had shown that the energy required to

nucleate a bubble could only be properly obtained by equat-

ing work to

W ¼ deþ PdV þ VdP: (16)

The proof was based upon other researcher’s empirical

data that they admitted could not be explained by traditional

theory.13 When nucleation theory is based upon Eq. (16), it

becomes constructive logic, in complete agreement with

empirical findings12 and for the first time nucleation proc-

esses can be explained in simple terms! What is amazing is

that no one had realized before.
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V. A CONTINUATION OF THE MISTAKE

By limiting the concept of work to isobaric volume

change, we unwittingly elevate the importance of entropy

change (dS) and volume change (dV), over and above

changes to the other parameters. Texts2,3,9 start with Eq. (6)

from which they subtract

SdT þ TdS ¼ deþ PdV þ VdP: (17)

In so doing, numerous thermodynamic relations are

obtained, i.e., Maxwell’s equations. This rendered thermody-

namics into the unique case wherein we start with a part

Eq. (6) and then subtract a whole Eq. (17) from that part, to

obtain all the other parts.9,12 In most every other application

of partial derivatives, one starts with a whole Eq. (17) from

which they then determine its various parts. The only logical

reason for doing so is the belief that lost work could only be

explained in terms of entropy change.

VI. ENTROPY AND CIRCULAR LOGIC

Our traditional consideration of entropy is founded upon

circular logic.8,9 Specifically, Eq. (6) was equated the empiri-

cal data for lost work, i.e., was equated to TdS. To then claim

that since our empirical data now equate to TdS, therefore,

all future solutions must be based upon the inherent logic

behind TdS, is circular rather than constructive logic. I would

like to believe that this mistake would have not occurred if

the 19th century greats had realized that the work required to

upwardly displace our atmosphere is PdV thus explaining

Wlost. Boltzmann’s mathematics, i.e., Eq. (3), only solidified

the circular logic!

Understandably, Mach and others were not convinced,

which sadly resulted in Boltzmann taking his life. This is not

to defer from the Boltzmann’s brilliance! Rather it shows the

powers of his math, and how probabilities give results, i.e.,

deal a deck of cards and there are probabilities of getting a

full house, or a pair, etc. The reason is the dealing of the

cards; the results are defined by probabilities.

Reasons should be based upon first fundamental princi-

ples, such as the displacement of our atmosphere and lost

work. The resulting volume increase, simply increases the

number of plausible energy states hence Boltzmann’s

entropy increase is a result, rather than the reason, as it is

wrongly professed in traditional thermodynamics.

VII. ENTROPY AND HEAT CAPACITIES

Consider heat capacity (Cy)2,3 or if one prefers the molar

specific heat (cy) for n moles

Cy¼ðdQ=dTÞy or cy�ð1=nÞCy¼ð1=nÞðdQ=dTÞy;
ð18Þ

where the subscript “y” signifies the constant parameter.

Comparing Eq. (2) with Eq. (18), one might be inclined to

then argue that entropy is simply the heat capacity for a com-

plex system. With complex system meaning a nonhomoge-

neous system in terms of state and type of matter, isometric

(isochoric) (CV) entropy can be calculated by14

SX ¼
ðTX

0

ðCV=TÞdT; (19)

where TX is the temperature in the state X. Note Eq. (19) had

led to the postulate known as third law of thermodynamics

(at T ! 0, entropy only tends to zero).

As simple as Eq. (19) seems, there remain inherent prob-

lems with our use of Boltzmann’s entropy as a type of heat

capacity. Reconsider Eq. (1). Does TS, or eþ PV, actually

represent the total energy of a system? Consider an ideal

gas’s total energy (Etotal), as defined by kinetic theory2,3,9

Etotal ¼ 3PV=2: (20)

Equation (1) does not equate to Eq. (20) unless one con-

cludes that for some magical reason that the energy, which is

not directly attributable to the mechanical parameters (P,V),

is e ¼ PV=2. Which makes no sense! Perhaps this in part

explains why some prefer to treat e as if it is something more

than simply all the energy within a system that is not directly

attributable to (P,V). Furthermore, treating e as some total

energy is illogical because the energy associated with the

mechanical parameters (P,V) is part of that system’s energy.

Since enthalpy does not define an ideal gas’s total

energy, then neither SdT nor TdS should define a system’s

total energy change, unless we rewrite the enthalpy relation

without entropy. Thermodynamics circumnavigates the pos-

sible that entropy entertains more than one guise by using

various unnecessary complex arguments, thus preventing en-

tropy from achieving a single simple definition. Ultimately,

confusing what should be a simple constructive science.

Simplicity can be attained if the enthalpy relation

(eþ PV) defines the ability of a gaseous system to do work

while equations such as Eq. (20) defines the total energy of

the system. Should TS remain part of enthalpy? Certainly

not, if SdT or TdS represent a system’s energy change, i.e.,

entropy remains a sort of heat capacity for what, nonhomo-

geneous systems? This separation of work from a system’s

total energy does provide clarity and helps explain

inefficiencies.9,10

VIII. ISOBARIC VERSUS ISOMETRIC HEAT CAPACITY

To enhance our understanding, consider the difference

between isobaric (CP) and isometric (isochoric) (CV) heat

capacity. Since the isometric heat capacity is constant vol-

ume, then there is no work done onto our surrounding atmos-

phere.9 Conversely, isobaric heat capacity involves an

expanding closed system hence the displacement of our

atmosphere, hence requires lost work, as defined by Eq. (4).

In other words,

CP ¼ CV þWlost ¼ CV þ PdV: (21)

Equation (21) is equivalent to the accepted molar heat

capacities9 (cy), which is written in terms of molar ideal gas

constant (R) as

cP ¼ cV þ R: (22)
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IX. ORDER VERSUS DISORDER AND THE
SECOND LAW

Many associate Boltzmann’s entropy and the second law

with disorder.2,3,5,6 Certainly Boltzmann’s use of the term

disorder in describing what happens over time6 has led to

this belief resulting in concepts like systems always moves

toward greater entropy.

Kinetic theory would have gas molecules spreading out

from their last collision, if it were not for the containment by

surrounding matter,9,10 i.e., system’s walls, or dense cloud of

gas molecules. Energy radiates outwardly from locals of

highest concentration. Do we really need traditional interpre-

tations of entropy, or the second law to explain what we wit-

ness? At best Boltzmann’s entropy remains a result, not a

reason!

Seemingly forgotten; forces such as gravity tend to put

order back into systems. Certainly, the formation of galaxies,

planets, stars, and all other cosmological bodies defy entro-

py’s traditional guise. Arguably, events such as supernova

result in matter spreading out, but the dust of such explosions

ultimately form future galaxies. Moreover, since lost work

by expanding systems is readily explained in terms of our

atmosphere’s displacement, then should entropy even apply

to our universe? This author thinks not!9,10

Since closed expanding systems tend to displace our

atmosphere, then no such system can be deemed isolated.8,9

Yet isolated is fundamental to the conceptualization of the

second law,8,9 hence this law falters in too many ways. Use-

ful processes/systems are those that can move man and/or

machine.9 Since most useful processes involve the system

expansion, then it becomes rather difficult to even fathom

how the second law even applies to most useful systems, i.e.,

cyclic engines.9 Does the second law even apply to our uni-

verse? Assuming that it is as Hubble surmised, then it

depends upon what surrounds our universe. If our universe is

surrounded by nothingness then no work can be done onto

that volume,9 hence in terms of lost work there should be

none.

Many believe that maximum entropy production governs

chemistry and life.14 Martyushev14 points out that nature

goes against the very notion of randomness, and the possibil-

ity of a difference between animate and inanimate objects, as

first conceived by Schrodinger. Martyushev14 then uses com-

plex arguments showing that it may be due to the differences

in interpretations between experts and nonexperts. Mar-

tyushev,14 Ben-Naim,5,6 and I agree that disorder belongs to

the eye of the beholder. Beyond that the second law’s limita-

tions, and entropy’s lack of clarity, make this author muse;

are complex arguments even warranted?

X. INFORMATION

When trying to decide what to call his information

theory function, Shannon toyed with words such as

“uncertainty” or “information.”6 It was Von Newmann who

recommended to Shannon:6 “You should call it entropy, for

two reasons. In the first place your uncertainty function has

been used in statistical mechanics under the same name. In

the second place, and more important, no one knows what

entropy really is, so in a debate you will always have an

advantage.” How scientific is that?

I do agree with Ben Naim6 that Shannon’s use of the

term entropy has further complicated an unfortunate situa-

tion. As for Ben-Naim’s marriage of information and ther-

modynamics,5,6 I remain troubled at the prospect of

molecules carrying the burden of information.

XI. THERMODYNAMICS WITHOUT ENTROPY

Traditional thermodynamics is more complex than is

necessary. This author has published a book9 that simplifies

thermodynamics without any real reliance upon entropy.

Although far from perfect, this author likes to think that it

provides a new beginning, one that will require the input

from many, hopefully resulting in a simpler, constructive

logical science, one that Sommerfeld would appreciate!

XII. CONCLUSIONS

Equating one’s theory to empirical data, and then saying

that all future empirical data now proves that theory, is circu-

lar logic, that being the foundation of traditional thermody-

namics! Specifically, entropy was devised to help explain,

lost work. Boltzmann then added his brilliant mathematics to

the fray, thus enlightening the idea of disorder, and unwit-

tingly enforcing traditional misconceptions.

Lost work occurs as expanding systems displace our

atmosphere’s weight.8 Hence, Boltzmann’s increase in num-

ber of microstates is a result of volume change rather than a

reason for energy loss, as is wrongly traditionally professed.

Accordingly, a new differing thermodynamic theory9 arises,

one that does not rely upon terms such as disorder, yet ren-

ders the identical empirical results. The new theory enlight-

ens us to Boltzmann’s constant simply relating a gaseous

system’s ability to do work to its local gravitational field.

This requires our acceptance that grandiose mistakes were

made, mistakes that we have all followed, and many still

endorse.

Could entropy simply be an ill-conceived mathematical

contrivance, thus complicating the simple? Seemingly, this

is the case. Moreover, thermodynamics can become a simple

constructive science all that is required is a willingness to

make it so.
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